

Spin-on-Glass B-750HP

Elements of Interest Si, O, B	Key Element atoms/cm ³ 3.5 X 10^19	Key Element % in Film Boron
Viscosity, (n)	Thickness	Shelf Life
1.0 cps, Refractive Index 1.46	Coats 1800 Å at 3000 rpm	20°C 3 months 4°C 9 months

Benefits

- Light boron doping level
- Only one drive in tube required
- Lower maintenance and cost of ownership
- High purity materials
- Uniform Coatings

- Lower melting point than silica alone
- Stable processing independent of flow rates
- Low PPB Range

Typical Application

This is a silicate boron doped glass for semiconductor and solar (back contact) applications. It begins curing at about 200°C to give a less dense but solid film. It continues to become increasingly stronger as bakes continue to 650°C or higher. We recommend baking at the highest temperature the material will see in any post processing. For doping applications the glass is often removed after drive in.

The boron in glass form is easier and cleaner to drive in than solid source processes and can give higher concentrations if desired.

Packaging

- 240ml
- 500ml
- 1 l
- 2.5 l
- 4 l

Alternative Products

B-1000

B-1200

B-1500

Alternate Elements Available

- Al
- Ga
- In
- Blends of two or more elements
- Listed above are for Silicon doping other elements are available for compound semiconductor doping.

Spin-on-Glass B-750HP

Although all statements and information presented in this document are believed to be accurate and reliable, they are presented without warranty or guarantee of any kind, express or implied. Information presented does not relieve the end user from carrying out their own tests to determine suitability for use in their application. User assumes all risk and liability for use product or information and results obtained. Suggestions for use of material and processes are made without representation or warranty that any such is free from patent infringement and are not recommendations for patent infringement. Please see MSDS for information regarding health and safety of material use.