Spin-on Glass Zn-245

Elements of Interest
Si, Zn, O, Cl

Key Element atoms/cm³
Zn, 2×10^{21}

Key Element % in Film
Zinc

Viscosity, n (635nm)
0.90 cps, 1.48

Thickness
Coats 1800 Å at 3000 rpm

Shelf Life
20°C 3 months
4°C 9 months

Benefits
• Diffusion barrier to avoid out gassing of doping material from substrate
• For final target concentration ranges from 2×10^{16} to 2×10^{18} of Zinc
• Uniform Coatings
• Available with impurity specification of less than 1 ppm or less than 50 ppb
• Lower melting point than silica alone

Typical Application
The concentration of the source for driving-in is typically high, in the range of 2×10^{21} Zn atoms/cm³. Thus leaving a high concentration of dopant right at the surface. During the drive-in procedure, the dopant diffuses into the substrate. It is also at risk to diffuse out of the substrate since it is so near the surface. Keeping a capping layer with dopant can prohibit the loss of the doping species. The basic capping layer can be a silicate layer such as NDG-2000. Zn-245 adds a level of dopant consistent with the final desired concentration. This addition of Zinc eliminates any concentration gradient that may exist and prohibits the loss of zinc through the surface layer.

Packaging
- 240ml
- 500ml
- 1 l
- 2.5 l
- 4 l

Alternative Products
NDG-2000
Zn-640
Zn-655
Other target concentration levels available

Alternate Elements
- As
- Sb
- Bi
- Other elements available for compound semiconductor use

Desert Silicon, Inc. 941S. Park Lane, Tempe, AZ 85281, 623.872.8659, info@desertsilicon.com, desertsilicon.com
Spin-on Glass Zn-245

Although all statement and information presented in this document are believed to be accurate and reliable, they are presented without warranty or guarantee of any kind, expressed or implied. Information presented does not relieve the end user from carrying out their own tests to determine suitability for use in their application. User assumes all risk and liability for use product or information and results obtained. Suggestions for use of material and processes are made without representation or warranty that any such is free from patent infringement and are not recommendations for patent infringement. Please see MSDS for information regarding health and safety of material use.