Product

| SOG Ti-1000 |

Elements of Interest

| Ti, O |

Key Element percentage

| N/A |

Dielectric Constant and RI

| RI 1.8 |

Viscosity

| 0.90 +/- 0.25 cps |

Shelf Life

| 20°C 3 months |
| 4°C 9 months |

Benefits

- Excellent capacitor interlayer dielectric
- Uniform Coatings
- High index for matching optical inputs/outputs or cladding
- Optically transparent coating or light scattering based on processing
- UV absorbing for critical applications

Typical Application

Titanium glass blends are useful for their high dielectric constant and high dielectric strength. This combination is useful in making capacitors in many diverse applications. The higher index is useful for matching to many semiconductor light input or output devices. It can also be used depending on processing to give a white boundary. They may be used for wafer bonding.

Packaging

- 240ml
- 500ml
- 1 l
- 4 l Packaging Standard

Alternative Products

- Ti-452
- Ti-100R
- Ti-140R

Alternate Elements

- Yttrium, Zirconium, Hafnium or Niobium
- Blends of two or more elements also available
- Other elements available for compound semiconductor use
Although all statement and information presented in this document are believed to be accurate and reliable, they are presented without warranty or guarantee of any kind, expressed or implied. Information presented does not relieve the end user from carrying out their own tests to determine suitability for use in their application. User assumes all risk and liability for use product or information and results obtained. Suggestions for use of material and processes are made without representation or warranty that any such is free from patent infringement and are not recommendations for patent infringement. Please see MSDS for information regarding health and safety of material use.
<table>
<thead>
<tr>
<th>Spin Speed (rpm)</th>
<th>Measurement 1 (nm)</th>
<th>Measurement 2 (nm)</th>
<th>Measurement 3 (nm)</th>
<th>Average Thickness (nm)</th>
<th>Standard Deviation (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td>102.8</td>
<td>102.6</td>
<td>102.1</td>
<td>102.5</td>
<td>0.360555128</td>
</tr>
<tr>
<td>2500</td>
<td>85.14</td>
<td>85.46</td>
<td>85.51</td>
<td>85.37</td>
<td>0.200748599</td>
</tr>
<tr>
<td>3500</td>
<td>73.03</td>
<td>71.25</td>
<td>71.9</td>
<td>72.06</td>
<td>0.900721933</td>
</tr>
</tbody>
</table>

Diagram:

- **X-axis:** Spin Speed (rpm)
- **Y-axis:** Film Thickness (nm)

The graph shows the relationship between spin speed and film thickness, with data points representing average thickness and standard deviation for different spin speeds.