Spin-on-Glass P-260

<table>
<thead>
<tr>
<th>Elements of Interest</th>
<th>Concentration atoms/cm³</th>
<th>Key Element in Film</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si, O, P</td>
<td>8.8 x 10²¹</td>
<td>Phosphorus</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Viscosity</th>
<th>Thickness</th>
<th>Shelf Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3 cps</td>
<td>Coats 1800 Å at 3000 rpm</td>
<td>20°C 3 months</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4°C 9 months</td>
</tr>
</tbody>
</table>

Benefits
- Heavy phosphorus doping level
- Uniform coatings
- Easy shipping without POCl₃ complications
- Lower melting point than silica alone
- Lower maintenance and cost of ownership
- Stable processing independent of flow rates
- Available with impurity specification of less than 1 ppm or less than 50 ppb.
- High purity materials
- Lower melting point than silica alone
- Key Element in Film: Phosphorus
- Stable processing independent of flow rates
- Available with impurity specification of less than 1 ppm or less than 50 ppb.

Typical Application
This is a standard phosphorous doped silicate glass very typical for semiconductor applications. It begins curing at about 200°C to give a less dense but solid film. It becomes increasingly strong as bake temperatures rise to 650°C or higher. We recommend baking at the highest temperature the material will see in any post processing. For doping applications the glass is often removed after the drive-in procedure.

The phosphorous in the glass matrix can act as a getter for sodium and other mobile ions. This reduces the effective concentration of unwanted ionic species.

Packaging
- 240 ml
- 500 ml
- 1 L
- 2.5 L
- 4 L

Alternative Products
- P-210
- P-220
- P-230
- P-240
- P-250

Elements Available to Add
- As
- Sb
- Bi
- Blends of two or more elements
- Other elements available for compound semiconductor use
Although all statement and information presented in this document are believed to be accurate and reliable, they are presented without warranty or guarantee of any kind, expressed or implied. Information presented does not relieve the end user from carrying out their own tests to determine suitability for use in their application. User assumes all risk and liability for use product or information and results obtained. Suggestions for use of material and processes are made without representation or warranty that any such is free from patent infringement and are not recommendations for patent infringement. Please see MSDS for information regarding health and safety of material use.